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ABSTRACT

Numerical seismic modeling techniques were developed by
using finite difference solutions to one- or two-dimensional
inhomogeneous elastic wave equations, Analytic solutions for the
modeling of plane wave propagation in horizontally layered media
were also obtained.

The first part of this report presents solutions to a one-
dimensional elastic wave propagation equation by an analytic
method and a finite difference method. The second part presents
some solutions to a two-dimensional elastic wave equation by a
finite difference method in an orthogonal cartesian coordinate
system. The third part presents some calculations of wide
angle reflection coefficients and interference patterns
associated with a thin bed with varying angles of longitudinal
wave incidence using Haskell's matrix method.

This study showed that a finite difference approach for
numerical seismic modeling may be a good method, particularly
in two-dimensional cases when there is emphasis on the
amplitude and shape of seismic signals returning to the surface.

The following three computer programs and user's manuals
are included in the appendices:

(1) Synthetic seismogram computer program for a plane
wave in perfectly elastic media.

(2) One-dimensional finite difference computer program.

(3) Two-dimensional finite difference computer program.
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INTRODUCTION

In seismic exploration, it is very important to compute
the shape and amplitude of reflected and transmitted seismic
signals for a complex subsurface geolozic model. Particularly,
in stratigrapvhic trap 0il exploration, the examination of
amplitude anomalies of seismic signals play an important
role in the interpretation stage in contrast to the travel
time anomaly used in the structural oil trap exploration.
Also the advent of vertical seismic profiles has increased
the applicability of the seismic modeling still more.

The purpose of this report is to study some of the basic
theories of elastic wave propagaticn and to make a computer
program to calculate reflected and transmitted seismic signals
very efficiently.

| Numerous authors (Peterson and others, 1955; Wuenschel, 1960;

Trorey, 1962) have studied plane wave propagation in a
horizontally layered media using an analytic solutions to a
one-~dinensional wave equation. For a perfectly elastic mediunm,
this analytic solution approach is the best, in this author s
opinion. However, for the realistic earth material which
always has some degree of attenuation, this analytic solution
is difficult to prozram. Therefore, we studied an inhomo-

-geneous, attenuating one-dimensional wave equation by a

finite difference scheme along with the analytic solution
approach.

One of the advantage of this finite difference approach
over the analytic solution approach can be found in making
synthethic vertical seismic profiles, or VSP s, In finite
difference schemes, we nust calculate seismic signals at all
grid points to solve the wave equation. Therefore, the
execution time for one output trace is exactly the same as



for the outputs at all grid points in a model. On the other
hand, one of the disadvantages of finite difference approaches
is its inaccuracey due to the accumulation of local truncation
errors, propagation errors, and grid dispersion errors,

which almost surely will increase as the length of a seismogram
increases.

We studied very simple models using finite difference
approaches and compared these with corresponding analytic
solutions. We found good agreement.

For an irregular boundary and/or non-normal incidence,
we conventionally use ray tracing techniques. For the
computation of arrival times of seismic signals from the
different geologic boundaries, this approach provides reliable
information. But for true amplitude calculations, and
particularly in the study of converted waves, this ray
tracing technique fails. Thus, as in the one-dimensional
case, we studied two-dimensional wave propagation by a
finite difference approach.

Aboudi (1971) computed elastic wave fields by a finite
difference scheme with a body force as a forcing function.
Alterman and Aboudi (1970) studied a one-layered half-space
‘in a cylirdrical coordinate system by implementing the
analytic solution around the source region with a difference
scheme. Also Alford and others (1974) investigated diffraction
problems and the accuracy of finite difference schemes in an
acoustic material by solving for a displacement potential
function with an analytic solution around the source.

Those authors, in common, used a homogeneous wave
equation and fitted the boundary conditions at many boundaries.
If these boundaries are simple (vertical or horizontal
interface) and there are not many of them, this approach may
be appropriate. But for complex geological models, this
homogeneous formulation may not be adequate. Therefore, we
studied an inhomogeneous wave equation using a finite difference
approach. '

Finally we studied wide angle reflection coefficients
and interference patterns due to a thin bed by Haskell's
matrix method.



This report has three parts. The first part of this
report presents the solution of a one-dimensional elastic
wave equation by analytic and finite difference approaches.
The second part presents a finite difference scheme for
solving a two-dimension inhomogeneous elastic wave equation.
The third part presents the reflection coefficients of a
thin bed.

Three computer programs and users‘’s manuals are included
in the appendices:

(1) Synthethic seismogram computer program for a plane
wave in perfectly elastic media.

(2) One~-dimensional finite difference computer program.

(3) Two~dimensional finite difference computer program.



ONE-DIMENSIONAL WAVE PROPAGATION

In geophysical exploration, it is very useful to compute
reflected and transmitted seismic signals for a horizontally
layered half-space, assuming plane wave propagation. Numerous
authors have studied this one-dimensional wave propagation
problem, either without multiples (Peterson and others,

1955) or with multiples (Wuenschel, 1960; Trorey, 1962),
either without attenuation (Peterson and others, 1955;
Wuenschel, 1960) or with attenuation (Trorey, 1962).

The purpose of this study is to make a computer program
to solve this horizontally-layered problem. We followed
Wuenschel's approach to make a synthetic seismogram for a
perfectly elastic medium, with all multiples. We also
studied the phase and amplitude distortion of a reflected
plane wave with attenuation but without multiples. Finally,
we studied the latter problem using a finite difference
scheme to solve an inhomogeneous, attenuating one-
dimensional wave equation.

Analytic Solution

(A) Perfectly Elastic Medium

To calculate the reflected and transmitted seismic
signals, consider Figure 1, composed of N layers of homogeneous,
isotropic and perfectly elastic material.
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Figure 1. Multi-layered half-space.

The one-dimensional wave equation to be solved in each
layers is

Yy
ox* VP oZ*

where 4 is the particle displacement, V is the compressional
velocity of the medium, and # is time.

- At
Uea) =f@Aa(x,é)/f_
3

Let



Then the Laplace transformed solution of the wave equation
for the » -th layer is

-~ X4/, L &)
G=2%5e "%, 0 ¢ <

BNEY
-An2 P

where 743 1is one way travel time from the free surface

to n-th layer.

The transformed stress in the / -th layer can be written as

~A N>

— 3 o
G, =-AL Z e  ralz e E (2)

where Zy = K/é

/» : density in the # —th layer
5‘; : normal stress.

The boundary condition to be satisfied in each layer is:

(1) When there is no source at »# -th interface,

— e

b = U,
i (3)
0 = Gmy

(2) When there is a unit impulsive velocity source at
2 -th interface,

Q@f/ )Z/
587 52 =9, 6,0
or
- _ /
Yoy — U =% (4)
O = 6,



When there is a source on the free surface,

we used a pressure
source.

Assume that there is a unit impulsive velocity source at

-th interface. Using Equation (1), (2), and (4), we can
show that, in matrix notation,

( \
. _ -
'[4 y d a3 g Zter
= G >
A )7 g sy &f/
Ak 4c44)3 / 3
L L g k /
where | s
)2 (7£f/ — Zi - X‘fo/
2t + Zdsy
é&aiﬁo = £ %
zé + f{f/

-Z
% 3 2
4 ( &+ {zf-f/)
% 3‘%‘
A (24 )
e 3

D
I

B2

I

Qu,
SN
|



When there is no source at an interface, we can show the
following:

(
-7 r
ol |7 fom) 3 7, (6)
éq(m”) »n
/& 7;(7'93 / &ﬁ
\ . J
:__4_ [(m] Lf/'
24/
Therefore, if there is no source, by iteration,
Z, Z :
7 = {C'n] (vH/] [C:)fz} 773 (7)
46) 1<)4+3

By combining Equation {(5) and Equation (7), assuming there

is only one source at £ -th interface, the following equation
can be derived:

() ¢ _{ \ ( N ]
_Z;{ - ———f—_— / }2 fl#l)&’ &)/ 77‘ [C:} _‘J -Z;a/ o)
Z%abv J;&v ¢
42 A . ewv
L) Y%ctr)3 e 4
\ ) /
and
: J

= 7 [C.} Z-é )
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Equations (8) and (9) are the essence of the synthetic
seismogram computation.

From Equations (8) and (9), it can also be shown

Z al Z, 4 4
) 7f ) “los T [5] @ (10)
2 Lyvr S 4

where a,v &/ &/‘.
Y ftdﬁ)yf d > g cda)

In the following subsection we calculate the geophone
velocity response for the specific source and detector location.

(1) Source at free surface...As mentioned before, in this
case, the source is a pressure impulse.
From Equation (2), at «x=o,

G = -2/ 4(z,-8) = ~ pi

where /24)18 the Laplace transformed source function.
Define

y. 4
= 77 (C- = C, <o
()= 75)

J= (11)

2/ RZ

Since there is no source from the first to the A/—th
interface, using Equation (9),

’z;: %:'.f/cc" '*'6/,;/6.2

A, = Zuw G +—4iﬁf63u;



Notice that there is no incoming plane wave from the half-space,
so we can set Ryyy =0 )
Therefore,

4 Z/ (Q/ _—C/'V)

(12)
R = o) Cay

A Z/ cc,y —"C;/)
Define

u 7=/ &%
w=Z W~[e wie

When a detector is on the free surface, using Equations (1)
and (12),

W = pa) (¢ +G,) (13)
o f/, cCCy —Gy) .

When a detector is on the /-th interface,

_ ¢ ¢
W, = /0/4)(/422(3’7%&5’),
Let
N y; 2
77 ((‘. = 25 72
=l d V4 (14)
0.';/( 0&2
Then, P
Ly = Oy Zy+/
I?Z = ﬁ}fzx/f'/
Therefore,
£
- .3 )
_....= /Oé (o,/éf‘dégjé)
s CC-G,) ' (15)
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(2) Source at the o7 -th Interface...From Equation (10),

- 4'/2. __oyL
® = Ji:“‘ J q%f = . Al

24 24

Since there is a source on the » -th interface, a free boundary
condition must be satisfied at X=0,
Therefore, from Equation (4), 2;==A>.

Define
-/
7 [(‘_] - 7 57
et S (16)

From Equations (9) and (10), using Equation (16),

/ /
Z, = & (S -57) +87CS5T ~S7
Cp —Coy

Ve / /
Z; = G (SR »S7R) -Gy CSTR/+ ST P,
where _

C, C.
6‘7// = // , 6.7%/ - 2/

Cy—Cy _ Gy — Gy

When a detector is on the free surface,

— 4 = e
W =3 ‘Z'p/ejféus - &S ) , (17)

—

where S = S7 -#-54’5/27

-
S = -r;..:v” "‘ém 222

When a detector is on the 1f—th interface and éﬁun, we
can show that

&{%‘3)“ = 2 e, 0
- = N(oga) ,  as

<y — Gy

11



where

= 7%
£ =57 - 57 s3mg -3

When a detector is on the,ﬁ-th intertace and {¢» ,
we can show that

V4

.
—

Wy = 2.3 > cnl-pfe30l500)06,5-45)

27 (19)

The main computation for a synthetic seismogram is the
multiplication of the layer matrix. An iterative scheme to
calculate matrix multiplication is as follows:

From Equation (6)

-2
C = __L___ / );w—nf'/) 3
2 éo(qp‘l)

”
’;m#) } '
Let

1

”jy 2 22

s 37’
%3
Where 2, = Kw).

[Q,,] 2dy  ada ~ Lo [C,] (20)

Define

”i [6,,] = [0;1 - [L] [%/]......[%_M'/} (21)

where B =y~
From Equation (21)

GRCHIC)

Let



Then, by the matrix multiplicatiorn,

[} o *
"'C///‘ = 4 ; * ("’—/43‘)(4:»*-1;;,)

< <y .. | : - 22
wdl (4t ) Cormi fs) # lurd ), 7., ) (22)
By the properties of matrix s
-
~d,, ¢3)= mos, /5,)
From Equation 20 and Equation 22,
’ . <
IC{/‘_ =/ = 7 ce)
. . ‘ .
< -< L ., <
1o < R3S 2 B3
¢ ¢ ¢ :
od) = (o 2t ) + 6"//;)(&//3-/)
= /* R ”,J
o
= 5;/") * 5(/)}
W -
€rgt e 2
4 < .y s ) L. . ~lcwr)
= §,6©)3 + G ey
~ By induction, we can show that
< A . 2 S ¢ o~/
wOG = ) F GG GG 2 G )] " (23)
S SRR o @
0/‘4: = 5&(‘)3 ¢ 4 g;&((-ﬂ)} ,‘ j - -fE‘ Syt )J (c'rﬁy
“Combining Equation 22 and Equation 23,
P < Q-J
my = Lr1+E 03+ - F ‘5/‘4"")} g'fﬂ-//
- ~+m-a)
rEE z,.); s E /w/; Lo L E Ct*”r*)} Lirorst 7,

= /*J [5;") * éi,_ (Cra~2) /Q'*,,.,]
.:“ < ¢ | - (24)
"3 (E/l ({) * E/‘.(“"”‘ﬁ"’)'(z}hvj

: 22 _ ¢ ) < . ) o s .
13 ot Gk )23 ey 2

72 T~/
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1% iThis is the iterative formula for the matrix multiplication.

i Likewise, we can show that
. -y & el £ <
mdi = JOG 2 JUENE L0 2 K, ]

¢ ¢
*} “u (erl) > E, (7-3) ’{‘44—/.]

meird)s < < |
fj ("’{)(/En‘[f{) + é-/; (@-"‘-I)/(i-",'_,]
(25)

13 4*"'“)[c— (Grm-2) “—‘")ew.-u

4. "'((.f’?")‘e ,
C’f‘ﬁ' .

(B) Attenuating medium

In the case where the medium is not perfectly elastic, the
reflection and transmission coefficients are complex qualities.
So we studied the effect of these complex reflection and
transmission coefficients for a plane wave in a horizontally
layered half-space without multiples, and showed how to compute
a synthetic seismogram for this situation.

A solution of the one-dimensional wave equation in an
attenuating medium can be written as

X AHX
U/A.\) Twwe & v rlhwe €77 (26)

where ZWQ)is the Fourier transform of the displacement and
o« is an attenuation constant.

To calculate reflection and transmission coeff1c1ent
consider the following situation.

é B /0 (ONI'AJ ’ A)J

7‘}‘0»&#:;7%\’4'? '&‘;

 Deflectrd
2, ¥, % ﬁ,“ ‘4, o
Ko |

7

Figure 2. Normal incidence of a‘plane wave at a boundary.
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From Equation 26, the stress can be wrltten

" X
) = [(0(7"‘7“/6 Xo~ w*fﬂz¢(“’*-)e X <w

v

* The boundary conditions at X=0are

0 =4
6; = b .

Let

b -, ~Jw
fo =A%
=~ : «, < w
[" = ;’e id e T VI—,(
=~ -~ A W
A =A™ e “% . :
‘Therefore the boundary conditions become,

A= A 2p

PURC 1oy 20) L PYA (R 2 00) = LY B LGY #0w)
Let

Y.
@c‘ = a ¢
Then, : )
./’Q"; A : Z(a’ W) -2 (U, +0W)
4‘ Zi G tiw) FE Y o)
72 % _ 22 (UYd + iw)
A%

Z (g +<)+ L (oGl +id)

"Let's assume o; is proportional to the seismic wave
frequency, so that CC :

of; —> de o aynce),

15



Define

a =y 20, +zl/L);+ 2, ry"

% = //g/ﬂ, - £zp,_)2'f (& -2.)"

- Z+Z
A, = AL ZrTEX2
- z,/s, * znpl

'(.z ~  Fas~ £~ 5
2{’1 - Z23;

3 = 22 /5,

Ny = Aan™ 7=

s
Then, . _
B A (M~ &) ResW) iB,
R = o-e 200 T 200"
5_\= __,)!}ez\?(/(}‘tel) A;né\))::e]_e[&t:
, .

N A

The general form of &, , 7z at 944 interface can be,

+ O =gy )

R
]
Ry
g

where 7, is the transmission coefficient from ¢4##)-% to =2 ~74
layer.

The layer thickness is adjusted such that.z;; =2 is constant
in all layers. n

16



This means that the two-way travel time in each layer is
the same.

Therefore, the reflected displacement on the free surface
due to the/ -th reflector can be written in the following form
in the frequency domain with unit delta function input.

AL y (8, +£,,)4n! “’)e —< w1

[j,;m)———zg_, ‘) e " € y (27)
where >
= a{; 0{
by =22
— 77 Ve ”
9= X (& » 8. )

&

c

N

Oy = 7 77

c=/ .
The synthetic seismogram is the sum of the series of
reflections. Therefore, for a N-layered half-space, the total
impulse response in the frequency domain is

—H I L (Gt L, ) nie) ik
e .

N— M
Ures) =22 2,7 4e (28)
=/

Examples and Discussions

Figure 3 shows a 4-fold surface to surface synthetic
seismogram from a sonic log acquired at the Lusk area, Wyoming.
A velocity versus time section plot is shown in Figure 4. 1In
this synthetic seismogroam, we deleted the source pulse since
its amplitude is so large it obscures the reflections.

The computer execution time to make a 2.2 second synthetic
seismogram for a surface source and a surface receiver from
about 6,000 sonic data points (2 feet sampling interval) and
1 milli-second time sampling (2 milli-seconds for two-way
travel time) is 1.5 seconds on the PDP-10.

Another useful application of this modeling program is to
make vertical seismic profiles (VSP's). This is done by
generating a whole series of synthetic seismograms, each one
assuming successively greater geophone burial depth. From the
attached computer program, which is written only for one source
and one receiver position for each execution, it is easy to
make VSP's. Figure 5 shows 121 synthetic seismograms for the
Collins well, Wyoming. Each member of the set represents the
wave field at a different burial depth.

17
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The phase and amplitude change due to a complex reflection
coefficient was studied using a simple model without multiples.
The model description is shown in Figure 6.

5’:8 Sar Auz.
- A
Y = Jﬁ’/y’r
—2 %
A =Jrro " 72
Aééﬁ~,%p4¢n V= u 422:

-3
Oo = SX %
Figure 6. One-layered half-space attenuating model.

Let the input wave function be f;(éj , which we take as
ALt =/ when og ¢ 7
=06 otherwise.

The reflected pressure &(¢(Z) at the free surface can be
written, using Equation 28, as

2R £-2 - £-2-
wie> = 2L (o DL — g E2T)

R0 g P D
7 ” p’fb/é—a—ﬁ"

where R is the amplitude of the complex reflection coefficient,
& 1is the phase angle of the reflection coefficient, @=~*a<,oud

——

(3::.20/,0/. vr

Figure 7 shows the reflected wave form with varying layer
depth "d", from 5 m to 200 m. From Figure 7, we can easily see
that the phase distortion due to a complex reflection coefficient
may be negligible unless 'd" is small. When "d" is large, we
can see only broadening of the wave form due to attenuation. So,
in calculating a synthetic seismogram for many layered case, we
may use a real reflection and transmission coefficients.
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Although phase distortion may not be seen in a synthetic
seismogram, it might be worth while to include the complex
reflection and transmission coefficient in the following cases:

(1) To study a thin layer with high acoustic impedance and
attenuation contrast with adjacent layers, especially when
receiver and source are very close to the thin layer.

(2) Theoretical study.

Finite Difference Solution

The numerical solution of an elastic wave equation with a
finite difference technique and high-speed digital computers has
become a powerful seismic modeling tool. The analytic wave
equation solution for an inhomogeneous, attenuating medium with
multiples is very complicated. Even if we find the analytic
solution, the numerical computation of the results is lengthy
and complex. This is the reason we studied a finite difference
scheme to solve the one-dimensional wave equation.

In this study, we included a perfect elastic medium, a Voigt
Solid, and a medium whose attenuation is approximately dependent
on the first power of frequency over any limited frequency range.

Since we are interested in many-layered earth models, we
solved an inhomogeneous wave equation with two boundaries (one
at a free surface and the other at the top of a half-space)
instead of solving a homogeneous wave equation with many boundaries.

(A) Perfectly Elastic Medium

The inhomogeneous wave equation in a perfectly elastic

medium is 2
P74 2 22U . .

where is density, d:c)f}l««), A and /Lare oé'me’constant, X is
vertical distance, and # 1s time.

We will replace the continuous function A¢xZwith discrete
samples of this function as

Pa) 77
Uix,8) —> H(joX, 228) = ‘j
Using the central difference formula, we can show that

» ” »
2w ) — Bt by Gy + 4204 2 s 4,

@2
221( —,,,q-. l/-‘» ”:n-l ~ 2
== N (z -2‘/ +4 )/[A )
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Therefore, Equation 29 can be written as the following
difference equation

»H » »-/
g— = Jﬂ/‘ —/{/' ’ﬁé—[\/‘f ”:”__(Q{j*d_l)fé_w./. 0/__L [/:7'/

2
where ﬁ‘/“ = .-—(4_22..1 (30)
fex)
Equation 30/is an explicit difference scheme, and we can
compute the displacement at each grid point at time step (72+/ )
in terms of the displacement at the previous time steps (# ) and

(n=/).

The solution of Equation 30 has physical meaning only when
the finite difference equation is stable. The sufficient stability
condition of the above difference scheme may be derived by
considering a homogeneous wave equation.

The stability condition for a homogeneous wave equation is
2%
ﬂé"z_ \V4 s Where V is the velocity.

So, we used the following stability condition

A%
%MXZ; \(/ ) where Vmax is the highest

velocity of the medium.
We often impose a free surface boundary condition. This
requires that the stress must vanish, or at least be a given
" function of time when a source is located at the free boundary.
Therefore, at ~X=2¢°
/4
bxx = P L% = —pl&)

, where Ek(is stress
and /Mé)is a pressure source function.

Using an imagihary grid point at «=-d4x, we can write the
above boundary condition as

n
//-3”-[//” -P

=

RIxX A

24



where U,” is displacement at «=-2X, and //; is the displacement
at ¥=4X%. Notice that when P>0 #y’=w,” , this is the free
boundary condition.

At the interface between the two media, continuity of
displacement and stress must be satisfied. Let AZ be the
displacement in the half-space and since there is no incoming
wave from the half-space, (ézge"“’"";f) where [ is the

velocity of the half-space. Heréafter the subscript 4 means
half-space. The boundary conditions at duaf(boundary at
half-space) are

”
G =4
"= 6
07 = 64
Therefore,
7
2 2 DUy U
Gl 5 =l ¥ o ’K%EZ—‘
”
Ly 2%
=TIA G , because
by cw ot~ X
2% VA Vy 2 . ,
A
Using a 3-point backward first derivative operator for 5%
the radiation boundary condition at ;=7 can be written, A

2 7 V]
//; = g‘%f (4’/5:/ "Z/J«z)
20X0 364 . AU
( RIX ” At)
4 g u
AZ’( Ll - G bh

1% Y -u y

Notice that when
/

Gl > Gl
-/

4y = uy :

25



This is a rigid boundary condition, since initially all
displacement is zero ¢ 44; =0.0),

When éﬂk ((/}/J.,

hg? a&. - Q%d_) -, which is a free boundary condition.

"i&

(B) Voigt Solid

The 1nhomogeneous wave equation in a Voigt medium (Whlte,
1965) is

Py D g4y 2 TL
/2.2.’ = (o/ ) 7 o Atox (31)

P LY

‘ /
Where /ed is the same as perfect elastic case and /% Y.
which is attenuation term.

Using the same method applied in the perfectly elastic
medium, the finite difference equation of the Equation 31 is

- /‘{/' (3‘;;,./. ”";"'/*[/ - é,-(ﬂ.}‘rf: 7 @/—-;)//{"*/ /_ ﬁ/‘*f //_977"/

At v 20 T 222 J¥

=é Y/ +2‘,2 /- J-f'd’-_L)-} u”

*3- JSr’ S 2 /

-+ é-—@’- [/f - _../__é_féf-. /{7'-/

o~ s~/
- 24 J Tt/

>

»/ '
"Z[ e Gzl - i (32)

0-—
6.«
24T J~zx J/

where A ~ @f) §
760
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Notice that when (5 is zero, Equation 32 is the same as
Equation 30. When p>0, the above equation is an implicit
difference scheme, and its solution can be easily solved by the

property of tri-diagonal matrix method (Richtmyer and Morton,
1967).

Balch (1970) showed that the stability condition is

&%
oy /0 .

The free boundary condition at 4=-2is

‘(/'nh’p ”377*/ - (Mr-/__ 1/311")
Jﬁféa—dt » ”
(N #2042 (45" 47)
Yoxa? %

The radiation boundary condition at #=jaXis

V4 7 ”
é/” == 46/_ - K/
J (ar 34#3¢) ( i /o2 )
C

2 » »-/ 2/ »/
Gty PG

7~/

a »/
@734 r3¢) 4

where
o = _@
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(C) Linear with Frequency Medium

The following sets of equations satisfy the condition that
a first power dependency on frequency could be approximated
over any limited frequency range (White, 1965).

p U _ by«

A+24

attenuation constant.

It

Where z{

(X

In difference equation notation,

]

w2 Y (67 - 6 o 2 Ut
/ /. ax ( e aff) JS T
/
- ¢ 7 _u? - L
67, (s Jf:é):{.l la 2%, Lex o7
J*x Y~ Jta 22X st J*2
” »/ 7
+ &3 s ~é}”"é§y + -
L ol

From the above coupled equation, we can compute explicitly the
displacement at the (n+l) time step using the previous displace-

ments and stresses.

The free boundéry condition is

nt) P o~/ »/ 247
Uy = Uy —dy 74 + —— /6/{"-'//,"7

G>
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‘weThe radiation boundary condition is

" c , v _ y?
‘{7 N a','( ¢4 Yo/
) J ””" A=/ ‘,A ‘)4 ”’4
rg (e e e Y )
| bCrraa)  1v ad n2
4 4
¢ 7 8 7
Where ' - C |
a= —o .
Jr 44 C‘--———é{;—-——
ot ’ 29X
o LY
2ox0L

& = 2o+3d +L4car)

Examples and Discussions

To study the accuracy and feasibility of an explicit
difference scheme for the solution of an inhomogeneous perfectly
elastic wave equation, we examined the following simple model,

which consists of two different perfectly elastic bars in
welded contact, Figure 8.

.239007‘ j%?ﬁ"‘db‘"“%iﬁy,L*

¢ 4 =d$ Mips b= gmms
£ R

VOO N SRNRNNAN

=

Figure 8.

NG
S

s .
\1\\

Geometry for one-dimensional perfectly elastic model.
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The external boundary conditions for this model are the
displacement field at one end and a rigid boundary at the other
end. We computed the displacement field along the bar at
Z= 150 ms, ¢= 350ms, and &= 550 ms.

The solid line in Figure 9 represents the solution using
a finite difference approach and the dots represent the analytic
solution. The free surface reflected wave looks a little
delayed. But overall agreement between two solutions is excellent.

To test the computer algorithm for the Voigt solid, we
compared our result with a known analytic solution derived by
Collins (1960). TFor a pressure impulse at the free surface of
a homogeneous half-space, we calculated the velocity wave form
at a dimensionless distance X = 4 with respect to dimensionless
time 7‘. The dimensionless distance and time are defined as

where

E___{\,M
- )\—i-)/,(,.

The points in Figure 10 were calculated from Collin's
analytic solution, and the solid curve was computed by the finite
difference method. The agreement between the two solutions is
excellent.

To examine the computer program for the linear with frequency
medium, we computed the attenuation of longitudinal wave versus
frequency. Figure 11 shows the attenuation of longitudinal
waves versus frequency for a semi-infinite medium whose
longitudinal velocity is 7100 ft/sec; shear velocity is 2860
ft/sec 7 is 0.345 ms, and @= 0.375 ms. This figure shows that
attenuation is nearly proportional to the first power of
frequency in the limited frequency range.
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One of the problems encountered in solving an inhomogeneous
wave equation by a finite difference scheme is that the ratio
4¢/pn 1is constant throughout the medium. The ratio 69éx'
controls the accuracy of the propagation of a given input
wavelet in a finite difference method. 1If (Zéyzxjyis the same
as the speed of the medium, the propagation error is zero--
this means that if a delta function of a displacement is
introduced into a finite difference equation for an infinite
one-dimensional medium, it propagates as a delta function
without tails or precursors, as the- theory predicts. However,
if 2X/»¢ is not the same as medium speed, precursors and tails
appear and the results are distorted. The larger ax/5o#
compared with V (medium velocity) is, the more the propagation
error is. This kind of error is more severe than the local
truncation error and round-off error. Therefore, some method
must be developed for the estimation of this propagation error.

The amplitude spectrum of the Fourier transform of a
delta function is equal to one for all frequencies. Knowing
this, we put a delta function displacement into our finite
difference computer model and computed the amplitude spectrum
of the resultant displacement at a certain point.

Figure 12 shows the amplitude spectrum of the displacement
at X = 2004X with two values of p, which is defined as p = Vo§éx .
Figure 13 shows the amplitude spectrum at X = 1002X . Both
figures clearly show that the larger o0 is, the more accurate
the amplitude response is. Also the shorter the propagation
distance is, the more accurate the response is.

Therefore, from a set of curves of this kind, we can
estimate the maximum frequency which may be contained in an
input wavelet, if the wavelet is to be propagated without much
distortion. With this maximum frequency, a stability condition,
and some criteria for the local truncation error of the difference
operator, we can choose the optimum value of the A%Qé—lﬁiio
for a given numerical model.
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TWO-DIMENSION WAVE PROPAGATION

The previous chapter deals with one-dimensional wave
propagation through horizontally layered media. This approach
provides reasonable answers for many problems encountered in
geophysical exploration. But it has limitations. For example,
it cannot handle such problems as predicting the converted
wave from a boundary, the geometrical spreading effect, or a
non-normal incidence wave. Therefore, to make a realistic
seismic model, it is necessary and important to study the solution
of a two-dimensional elastic wave equation.

Presently, most of the two-dimensional modeling techniques
use ray tracing. To calculate an arrival time for the seismic
signal for a normal or nearly vertical ray path for an arbitrary
subsurface, the ray theory may provide a reliable answer. Also
this technique can solve some of the problems such as geometrical
spreading, and mode conversion for a simple model. But present
two-dimensional modeling techniques cannot fully solve the
diffraction problem, all kinds of mode conversion, and true
amplitude and shape of the seismic signal.

One way to eliminate the above problems, as far as theory
is concerned, is to compute the entire elastic wave field by a
finite difference method. Currently, numerous authors are
studying the solution of an elastic wave equation by a finite
difference method (Aboudi, 1971; Alford and others, 1974;
Alterman and Aboudi, 1970; Alterman and Karal, 1969).
Theoretically, a finite difference equation can give an exact
solution of the elastic wave equation as the sampling interval
both in space and time approach zero for any complex geological
subsurface.

Thus, the purpose of this section is to study the feasibility
and applicability of this finite difference approach. If
subsurface structure is simple, it seems to be more reasonable
to solve a homogeneous wave equation with appropriate boundary
conditions at each boundary by a finite difference method.
However, for a complex geological model +to fit a boundary
condition at each boundary is rather complicated. So we set
out to solve an inhomogeneous elastic wave equation, which
contains all interface boundary conditions in itself, by a
finite difference scheme.

37



Difference Equation

Two-dimensional inhomogeneous ealstic wave equation in
an orthogonal cartesian coordinates x and y can be written as

U 2// 24 Jw
/p /945/‘* -- (/**;/a)éax ;QX ég;*

2 oW dU
*<§(£ * 5y 7

azu__ 2 20 , A 24 (35)
L //{/7‘270*/) 2y 27 Ox
2, pw , o
| ox (2x ” 27 / |
' p ) > F z
= A 24 2w (24, 2w,
/S/U_ i IX> * A DXy / Sy ” P
| ’@7
- ‘
*L A
P u Sw D
/7//V= (/‘+7“)2'_77'- * éﬁéy 4/[5—’(‘_ + a———-—x27
> <+ PF
where
: density

A _#:Lame constants
&« : horizontal displacement
¥ & : vertical displacenment
A, A? ¢ x and y-component of body force.,
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Let
a n .
U gD =2 U (X, oy, 1580 = oy

Using a central difference approximation for all of the derivatives,
we can write Equation 35 as the following coupled difference
~equation, assuming AX=A} for simplicity:

¥/ N ” o
l/,{/. = U s 24— 4
# Lo 7 ”
% [m*‘}“){;;"(”*)«){n]( 4‘4'{; Y
Az -
¥ —;-[JA"/J‘ ~)“.,’Q] c U;J‘*l “{‘;Jy) o9
g "“’/ : 0
7 /ﬂ"l/l" -/‘4;/"-1) ( a/"’"- M“":‘ *
7/
”» ”
ae) /\/ » 2
Jj; - /99%/ *+ Z&aés; - 49?
.;..'_‘QZ((Aﬂ J - "(/“‘2 ), ](4}” " )
& ot G ¢ A vl Y s~
b A
* 7 (/,4}/"*/ /’(;/:,] 4 ('.,q,/.. - /4:.9/.) (37)
4é - » 2
¥ ‘fia;‘ c;/“?ﬂa; ‘}/4~q/ ) (' ‘;3; - ¢;2j- 4
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where A‘"f = (Aé)l///%-“x&) .

The finite difference Equations 36 and 37 are exrlicit,
-s0 that the displacement at the (n+l)-th time step can be conmputed

using the previous n-th and (n-1)-th time step displacements
and a body force tern.

The difference equations have physical meaning only
when they are stables A sufficient stability condition

may be derived by considering the homogeneous difference

equation. Aboudi(1971) showed that the difference scheme is
stable when %
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where & is p-wave velocity and /3 is s-wave velocity.,
So, in the inhomogeneous case, we can determine

by the maximum value of y“y!%(}‘- of the medium.

The free boundary condition al y=0 is

’w U
w)c /(( :"";7 = 7%

L U dw 2W_
Gy e/\(é-;-— %3—;}4}‘{;;_

where 7 and 7y are givaen surface tractions and G;y and 0y,
are conmponecants of stress,

As in the one-dimensional case, we introduced an imaginary

grid point at = -oy to compute the first derivative.
In difference equation notation, the above boundary condition
can be written as

N ) P A Wil s |
f/ %3+ == ( ey s vl Tl = -

> 4 i 20y

C., = A '-Z'( N )-+1aA° - Y ok

ot T Avap O% 2 "¢, 43 A+3ac Y .

When there is no surface tracticn, Equation 38 serves as a
free boundary condition.

At the edge of the model, we provided a rigid boundary
condition, which will produce unwanted "artificial®”
reflections. We tried to implement radiation boundary
condition, but have as yet not been successful.

In the inhomogeneous finite difference formulation,
every elastic constant (velocity and density) must be a
continuous function of grid points. Thus, all discontinuous
variation of elastic constants must be chanced into
continuous ones. If the continuous variation of elastic
constants is sufficiently abrupt in the inhomogeneous
. fornulation, we can approximately treat this continuous
interface as a discontinuous interface. Figure 14 shows
how we treat this discontinuous interface in the
inhomogeneous difference scheme.

Most of the authors (Alford and others, 1974, Alterman and
Karal, 1969) used an analytic solution in an infinite
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Figure 14, Elastic constant transition for inhomogeneous
formulation. ;

medium around a source region to initiate an elastic
disturbance. Alterman and Karal (1969) discussed how to

- £it a boundary condition around the source using an
analytic solution. In this study, we used an initial
disturbance by a finite difference method, which has been
fully explained by Aboudi (1971). So we will not discuss
this simulation of seismic source in a finite difference

scheme here, “
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Grid Dispersion Relation-

When we perform numerical calculations of wave
propagation, using a finite difference equation, a
propagating pulse on a discrete grid shows dispersion

-(Alford and others, 1974). This phenomena, called grid
dispersion, can be examined by considering phase
velocity as a function of frequency. The following
derivation of grid dispersion for the displacement

"is based upon the plane wave propagation in a whole space
by a finite difference scheme.

- i .
Let D be the plane wave solution such that

= p ,..,ut Lxeo o - ’fy&mﬁ7 (39)

We substitute Equation 39 into Equatlons 36 and 37
retaining only the homogeneous terms. Then,

% & (waé) 4{4]5 4‘_ (dxc.o&»f) 2
<

@87 D 4 *( "‘:"9“)

. L)B £ in (0% c00h) din (03 2 62)

where
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[c] = |° e o e 2L
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< 2 - iz,



J = £ sl )
Prel'CBelpsatall @)
S = E‘(K’-ﬂ‘)&f .2 ap/omf_

Then, to get non-trivial solution for ,0 , the following
determinant should be O,

. a & o
wAF) s s

0 (40)

| P weot !

The Equation 40 can be written as

(,&“& ol "‘E/)("“,U‘t"E‘_)=O.

=
‘The solution £ or & is

Z - (S, 45.) + { €550 ¢5.°
A

2
£, = C;*5i)'f /2;*3;) +'45;z

L
< 1
i
f
i

Therefore,

wol D N ‘
r g > A/E, (41)

The Equation 41 provides us with a relation between grid
dispersion and the sampling interval. Examining the
limiting case (i.e., 4X=do , 4d =ve ), wel/fy = &7 /&
gives us a grid dispersion relation for the 1onvitud1nal wave

and wot/y = #4/a” /&, cives us a grid dispersion relation
for the shear wave.

. Grid dispersion relation for the longitudinal wave is
as follows: :
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Lt o(iot

where Co is the phase velocity at zero frequency and C is
the phase velocity at frequency o .

Define
ot

P= &=
' o~
G 2in Y E/
@e(
P

where G is the number of grid points per wave length.

Then,

Like the p-wave grid dispersion relation, the s-wave
grid dispersion relation is

g PR /97/‘

Examples and Discussions

. Grid dispersion is one of the potential sources of
trouble in finite difference calculations. So it is very
important to study this kind of error in numerical modeling
by finite difference schenmes.

Figure 15 and Ficgure 16 show the normalized p=-wave
~phase velocity for different propagation angles as a
function of grid points per wave length, where
¢ p-wave phase velocity/zero frequency p-wave
phase velocity
& : -number of grid points/wave length
@ ¢ propagation angle with respect to the grid

P = 4"44732(
*= /7
From Figures 15 and 16, we can say that:

(1) The larger the value of p becomes, the smaller
the grid dispersion error becomes,
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(2) 1I£ 1/G is less than 0.05, this type of error is
almost independent of p, and its phase velocity is nearly
that of zero frequency p-wave phase velocity.

(3) Propagation angle is a minor factor for the p-wave
grid dispersion error.

Figures 17 and 18 show the grid dispersion relation
for the s-wave propagation, where
: s-wave phase velocity/zero rrequency s~wave phase
¢ velocity.
From Figure 17 and Figure 18, we observe that:

(1) As the value ofdﬁétﬂpproaches the s-wave velocity,
the s-wave grid dispersion error becomes smaller.

(2) 1£ 1/G is less than 0.05, this type of error is
almost independent of b, and its phase velocity is nearly
that of the zero frequency s-wave phase velocity.

(3) The grid dispersion is 1arge1y dependent on the
angle of propagation. .

Therefore, for a given ‘%ét-ratio, which must satisfy
the stability condition, if the value of 1/G is nearly 0.05
for both p-wave and s~wave, we may not expect severe grid
-dispersion errors in a finite difference scheme,

A point source approximation in a finite difference
scheme is described by Aboudi (1971). Usinz his temporal
and spacial dependence of a point source, we compared the ;
displacement field in a whole space computed by an analytic
solution with a finite difiference solution, Figure 19
shows a radial displacement at Xz J§4X , and «=206%X,
The consistant discrepancy between two solutions is caused
by the finite sampling interval and the ratio of grid size
to the pulse width of the input source function.

Actually, in this finite difference scheme, any theoretical
point source is approximated by an extended source (in this
example, the source region is extended by #é6% and £4%X
in x- and y-direction respectively, which is the cloest
numerical aporoximation to a point source). For the further
discussions of these kind of extended source compared with
goint)sources, the readers may consult Alterman and Aboudi
1970).

o Fligure 20 shows the radial displacement at ‘Xt/odXﬁ
©&cO0 and @=37° in an elastic whole space: One of the
displacement is reversed in sign. We cannot see any noticeable
differences between these two displacements. So we can say
that, in this particular example, the angular dependence of
the propagation error of a symmetric point source is
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negligible compared with the discrepancy between the
analytic solution and the finite difference solution.

In general, it is difficult to compare these two types of
error. But it confirms that propagation angle is a minor
factor for the p-wave grid dispersion error.

Figure 21 shows vertical and horizontal displacements
in an elastic half-space at x=loax, y=0. An explosive
source 1s located at x=0, y=20X. ile can clearly see two
distinct arrivals;a direct compressional wave (p) and
Rayleigh wave (R). We can expect asurface generated shear wave
in addition to p and R. But, this arrival time is near the
Rayleigh wave arrival time, so it is not seen clearly
in this example.

The geometry and parameters of the vertical fault model
are shown in Figure 22. Figure 23 shows the vertical
displacement on the free surface at various geophone positions.
Fach trace is normalized separately, and the normalization
values are shown at the edze of the Figure 23. Using ray
theory, the arrival times for different wave types are also
shown in Fizure 23, where

b: direct p-wave arrival

D; diffracted p-wave arrival

PP: bottom reflected p-wave arrival.
The amplitude decay of the direct p-wave arrivals follows
the Yy law, the theoretical prediction. The quantitative
analysis of the later arrivals are difficult, so we did not
investigate the amplitude of the later arrivals. However,
the arrival times are in good agreement with ray-theoretical
arrival times,

Figure 24 shows the vertical displacement at the free
surface for a vertical fault nodel, whose parameters are
exactly the same as the parameters of Figure 22 except the
-upper medium is a Poisson's solid (i, e.,ahg/i) instead of
a fluid. -

Like Figqure 23, each trace is normalized separately,
and its normalization value is shown at the edge of that
figure. Compared with Figure 23, in addition to P,PP,D, we
can see the large amplitude surface wave after the first p-wave
arrival and converted s~wave( reflected at the top of the
fault). Due to the surface wave development along the free
surface, its amplitude decay is quite different from
Figure 23,

53



1.10 I 2 T T T T I T I
1.0CF ~
! HORIZONTAL
L DISPLACEMENT i
Os (C o \»/ \q —
. ~ / M ' \M_ ’
| /|
v \ |
C . OQ s / -
-0.50 - / /\ -
/
| /
Hdﬂ ” mw I'I‘ —0 ml n —' n ~0 » _- 'l...
s §&§ ¢ $ § 8¢
TIME

of an elastic half-space.

u 0 Jo " 1 1 T 1 1 4 w :
1.00 . . ' wt@
. VERTICAL \ / i
. DISPLACEMENT ,\ \ N
{
P
0.5C 4~ i +
’ it
o
r . i -
\\. ./ o ~
..\ kY s !
Oo OC \w' // m \ _
.\ L /
B \r\ . . lu \\v!i. \ s
. . /-
-0.50 — /. J -
. i
i
o AP BT B S B
) o o o o c o
N < LG} D ahw =
TIME

- Figure2l, Vertical and horizontal n»mﬁw»omsmsdm on the free surface

54



<
T L | F?'ee lfﬂrfACOL

r8a¥X .*'

Aowurce co,30x)

7T 7T 77T

F/(//‘O’ 09, /;

BIVAYY
%= o

Ce = %5
é: /.‘2/;

Filgure 22, Geometry for a vertical fault model,

55



%Mnae
Localsen
1
//
- L-
P
b ;
s .Sp
\
o
~

Figure23., Vertical displacement on the free surface for a
vertical fault model, embedded in a filuid.

56



6?'0/)0’8
Lot oSfan

/04)(

16X

e

~28%%

Figure 24, Vertical disnlacement on the free furface for a
vertical fault model embedded in a solid.

57



Figure 25 shows the geometry for a one-layered half-space
model. The vertical and in-line horizontal motions at the
free surface are shown in Figures 26aand Figure 26b respectively,
with ray-theoretical travel times indicated for selected
arrivals. The converted s-wave (PS-reflection) is distinctly
visible on both horizontal and vertical motions. The PS~reflection
at short rances is stronger on the horizontal motion than on
vertical motion. The propagation of F3-reflection at long
ranges is faster than expected, which is caused by the grid
dispersion effect. e can see the disversed wave train at the
tail of the direct p-wave arrival, particularly on the hori-
zontal motion. The sampling interval used in this computation
iIs ot =2 ms, and <X =25 ft., Using these values, p=0.48 for
the upprer medium. Ve did not study the frequency content of
the propagating pulse. So it is difficult to estimate, quantitatively,
how much the grid dispersion effect on the dispersive wave
train might be. However, the dispersed wave train is caused
possibly by the grid dispersion effect. This grid disversion
-error, like other types of error, might be increased as the
number of iterations increases. On the vertical motion, the
phase change of the totally reflected p-wave (beyond the
critical angle) is also visible.

Due to the truncation of the model, we can see the arti-
ficial reflections around 0.5 sec in Figures 26a and 26b.
This is the one of the major problems in using finite difference
-schemes for a realistic numerical modeling. Unless a radiation
boundary condition at the edge of the model is implemented,
~ we must always expect these unwanted artificial reflections.

Figure 27 shows the geometry of a localized inhomogeneity

embedded in an elastic half-space. The p-wave velocity

of the half~space is 7000 ft/sec and p-wave velocity of the
inhomozeneity is 4000 ft/sec. Vertical and horizontal motions

on the free surface are shown in ifigure 28a and Figure 28b
~respectively with the identifiable reflections around the
epicenter. The later part of the seismogram is severely contaminated
by the arificial reflections from the edgze of the model.

The strong horizontal motion at short ranges,around 0.32:

second, is quite comparable with the vertical motion.

"This strong horizontal motion is a ghost diffracted shear wave.. .
The extension. of the p-wave reflection from the top layer
beyond the ray-theoretical reflection limit is p-wave diffrac-
tion.
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THIN BED REFLECTION

The reflection and +t:ransmission amplitudes of an
inciden” longitudinal wave due to a thin bed is of
considerable interest in stratigraphic oil trap studies.,
The purpose of this section is to exhibit the calculated
energy partition of the incident seismic signal due to a
thin bed by varying the angle of incidence and frequency.

Theory

The basic theory for this problem can be found
elsewhere (Dath, 1968, Haskell, 1953). We shall merely
summarize the final results here and make some important
definitions.

Figure 29 illustrates the problem.

Let : :
longitudinal wave velocity of the i-~th medium
shear wave velocity of the i-th medium
density of the i-th medium

dilatational displacement potential of the

i-th medium for the down-goinz wave
dilatational displacement potential of the

i-th medium for the up-going wave

rotational (i.e. shear wave) displacement
potential of the i-th medium for the down-goino
wave

rotational displacement potential of the

i-th medium for the up-going wave,

LY ”§?>3253

N
L]

LA

From the Haskell's matrix method, we can compute all
£ 1 4714’ and v in terns of incident potential g .
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Then the energy partition between incident longitudinal

wave and transmitted or reflected wave can be written by
the following way.

£l = R ¥
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where A* means the complex conjugate of A, E means the
energy ratio, whose superscription identifies the wave
type (p or s-wave) and subscription differentiates between

the reflected (r) or tranmitted (t), ¢ is horizontal phase
velocity, and

=‘ (' (i;é}:)a-{jfif For c)’ﬂ:,

= ’4 1— /- { J/ far ¢ (%

Yo = CaS=1]S A fn
.

(ST A

The above energy fatio is not an instantaneous energy
ratio, it is the ratio averaged over one period.

Examples and Discussions

Figures 30 through 33 show the square root of the energy
ratio as a function of varying bed thickness, using the
following parameters (Table 1) for the computation,
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/amraﬁveihvu’ d < 3

P~ wave Velo e Ky Pfrpe | 30 Jo 37./’0 Jooo0
S-wave Veloc)ly Mfsac | 17PL| ZooL| 170f

Densi Xy B3/m3 |2¢20| 2330 | 2400

Table 1. Parameters of a thin bed-A.

In these figures 1 represents bed thickness with 1=4d/A
and A is the wavelencth for normal incidence in the thin
bed. When the angle of incidence is less than the p-wave
critical angle ( 55°) between medium 1 and medium 2, we
can clearly see the interference effect. For the normal
incidence case, when 1 is an even number, the reflection
‘coefficient is equal to the usual coefficient of
reflection from the boundary between medium 1 and medium 3,
Just as if they were in direct contact with one another.
Thus we can say that a layer, an integral number of half
wave lengths thick, has no effect on the incident wave,

Figure 34 through 37 show the ratio of the square
root of the reflected p~wave and s~wave energy to the
incident p~wave energy as a function of frequency. The

parameters used for this computation are shown in
Table 2,

PA ramejers / < 3
P-vave veloc'te  Afsee| 3737 3000 3727
S~wave VeloerXy M/[sec|z2zts | 160y 2128

Dens, ¥y K3/m2 | 2660 | 2280 | 2540

Table 2, Parameters of a thin bed-B,

In these figures "d" represents bed thickness and &
" represents angle of incidence of the incident wave., We

can see how the interference pattern varies with incident
pulse frequency.

68



ENERGY RATIO

. 0.400}- . (] | -

“
~

0.000"

80. —
85.

'ANGLE

Figure 30. Znergy partition for the reflected p-wave with varying
hed thickness as @ functicn of inclildence angle.

69



ENERGY RATIO

0. 250 — —

00 200 — —

0.150—

00100 —

0.000

ANGLE

Figure 31, Energcy partition for the reflected s-wave with varying
bed thickness as a function of incidence angle,

70



ENERGY  RATI0 -

A il | . | . i ' | M | v ) v ) ) i ) l

0.800

0.400

0.000 L—

ANGLE

Figure 32, Energy partition for the transmitted p-wave with varying
bea thickness as a function or incidence angle.

71



ENERGY RATIO

\

.
v

0. 250 —

S———
T S N

0.200

s

0.150

//7/

-

AN
NN N
| 2
SRNY
\

™~

'0.000 TN R N | 1 | 1 | L1 1 ] ! | 1 1
o o o o o o a o o 0
-— N N < n 0 N o) e 0]
'ANGLE

Figure 33, Energy partition for the transmitted s-wave with varying
bed thickness as a function of incidence angle,

72



ENERGY RATIO

0.500

e \\ r
//qg AN d=24m
0* N\
0.400 7 \\ —
_ -~ N
7 5>~ \\\\ \\
— ~~
L~ \\\ \
N \
0.300 \§\ —
: ] \§\
3 /’/-
// o \\\ N\
-
0.200 R

0.100—

R T |

0.000

20.

o
<

30.

FREQUENCY (Hz)

Figure 34. Energy partition for the reflectéd p-wave

with varying anzle of incidence as a function of
frequency.

73



ENERGY RATI0

0.250 T I T T T T T I

S
r
d=24m
0.200 <o
NN
\\\\
\
\
7
0.150 \ \\ d /;/
. — Y4
\\\\ \?S‘o ,////
Soon \ \ /s

N\ // ,//
. N o/ /
0.100~ \® \ s/ 2

- —
/ s/ N
N\ \\ YAy Av4 ™
_,.-—*-—'—5--\3 \\ P // // //
: N -
0.050 N SIS P .
\\ - \ /’/,/

0.000 ! | . | s - | .
: o o o o o o
N M <t n 0 ~N

FREQUENCY (H2)

Figure 35. Energy partition for the reflected s-wave

with varying angle of incidence as a function of

frequency.,

74



ENERGY RATIO

0.500 T I T I T I T ~ [ T -

 0.400

0.300

0.200F

0.100

0.000

20.

FREQUENCY (H2)

Figure 36, Energy partition for the reflected p-wave
with varying angle of incidence as a function
of frequency.

75



ENERGY RATIO

0. 7 N\\ //-
.. \oc? 77/// /.//h\\\\ | / //

0.250 . I . T T T T I T

N/ \ “/
0.100 7N e / -
N\ 7\ // /
\\ Vv NN\ S/
AV N N\ / /
a4 TN /// /
0.050 N\ X _~ P N X~ -
\\‘/ /7<\ /// | &/ / y s
T N \’ ye g
| | \\\\,//
0.000b—t—L S L b ,
Q 2 e a 3 R
FREQUENCY

Figure 37. Energy partition of the reflected s-wave
with varying angle of incidence as a function
of frequency. _

76



If we can separate a direct wave from a reflected wave,
it is possible to measure the amplitude ratio between two
“waves in the frequency domain and compare with the calculated
reflection coefficients, which may provide a thin bed
characteristic. But much of our analysis of field
measurement indicates that it is difficult to separate a
reflected wave from a direct wave, In this case, we cannot
directly compare the reflection coefficients with frequency.
So it seens to be more useful to calculate a waveform in the
time domain to study the effect of a thin bed or a packet
of thin beds.
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CONCLUSIONS

An analytic solution of an one-dimensional wave
equation for a horizontally layered elastic medium provided
a good computer algorithm to generate synthetic seismogram
for arbitrary source and detector locations, By a slight
modification of the avpended computer program, vertical
selismic profiles can be easily generated.

The phase and amplitude distortion of a reflected seismic
wave, caused by complex reflection and transmission coefficients,
may be ignored in generating synthetic seismograms,

Finite difference approaches for the solution of
one~dimensioml,innonogeneous, attenuating media may be a
good and powerful technique for one-dimensional modeling.
For simple models, the solutions by finite difference schemes
are in good agzreement with analytic solutions. We successfully
. implemented a radiation boundary condition in the one-dimensional
difference formulation., The main problen in applying finite
difference approaches to realistic modeling will be the
computer execution time, since we may use very small samplinz
intervals to reduce the propagation error in each inhomogeneous
region,

o In making two-dimensional seismic models, finite difference
" approaches may be a useful tool. Even if there are some erroneous
arrival times, particularly converted shear waves, and
dispersive tails in the wave propagation, we can identify

all types of elastic waves in synthetic seismograms. Also we
can see the phase chanze beyond the critical angle reflection
and diffractions. rFor <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>